CGRER co-director delivers UI Presidential Lecture


dsc_0315
Dr. Gregory Carmichael (left) and University of Iowa President Bruce Harreld (right) at the 34th Annual Presidential Lecture on Sunday. (Jake Slobe/CGRER)
Jenna Ladd | February 21, 2017

UI Center for Global and Regional Environmental Research co-director Dr. Gregory Carmichael delivered the 34th Annual Presidential Lecture to a crowded assembly hall at the Levitt Center for University Advancement on Sunday.

The lecture, titled “What Goes Around, Comes Around: The Global Reach of Air Pollution” featured opening remarks from University of Iowa President Bruce Harreld. Quoting Dr. Jerry Schnoor, Carmichael’s co-director at CGRER, President Harreld joked, “Greg is now more traveled than George Clooney’s character in Up in the Air, four million miles and counting.” Carmichael’s extensive research of the long-range transport of air pollution has taken him to many parts of Eastern Asia, South America, Africa and Europe, among other locations.

Carmichael’s lecture was organized into three parts: the global reach of air pollution, the link between climate change and air pollution, and a finally, a discussion about the action necessary to curb air pollution worldwide. The lecturer made a strong case for air pollution research, citing that it is the root cause of 7 million avoidable deaths per year. Carmichael pointed out that air pollution has economic consequences too; each year, it leads to loss of 10 percent of U.S. soybean yields.

The lecture encouraged a sense of urgency when it comes to cleaning up the atmosphere. Carmichael warned, “That molecule that we put in the air today will stay in the air for a long time.” He went on to say that 20 percent of carbon dioxide released into the atmosphere today will remain there for thousands of years. Professor Carmichael’s research focuses primarily on the utilization of comprehensive computer models and big data to simulate the interplay of air pollutants with weather and climate.

His work has been instrumental in understanding the way in which air pollutants from China move across the Pacific Ocean and affect the Western U.S. He said, “Fifteen to twenty percent of clean air policies in the Western U.S. are being offset by Chinese emissions.”

Above all, the Karl Kammermeyer professor of chemical and biochemical engineering emphasized his passion for instructing and advising students. Carmichael has supervised the research of 40 PhD and 35 Masters of Science students at the University of Iowa.

To learn more about Dr. Carmichael’s career, check out episode 5 of CGRER’s EnvIowa podcast.

Extreme Rain from Thunderstorms is Rising Due to Climate Change


precipitation_nca_1991-2012_lrg
Precipitation change in the U.S. from 1991 to 2012. (NASA)
Jake Slobe | Febraury 20, 2017

This week’s On The Radio segment discusses a recent study linking climate change and an increase in heavy rain events.

Transcript: An increase in extreme rain events could change the ways cities handle storm water management and flooding.

This is the Iowa Environmental Focus.

Rain is increasingly falling in the form of short, localized bursts associated with thunderstorms found a new study released in Science Advances late last month.

The study directly links this increase in heavy rain storms to the warming and moistening of the atmosphere caused by rising greenhouse levels.

The results fit with rainfall trends already observed in the U.S., as well as model predictions that massive rains associated with thunderstorms could become both more common and more intense in the U.S. as the world continues to heat up.

Extreme downpours have already been increasing in the U.S., most notably in the Northeast, where they have increased by 71 percent since mid-century, according to the 2014 National Climate Assessment.

Upon previous research which has also predicted an increase in extreme rain events due to climate change.

To learn more about this study, visit iowaenvironmentalfocus.org.

From the UI Center for Global and Regional Environmental Research, I’m Betsy Stone.

EnvIowa Podcast: Dr. Gregory Carmichael


2016_11_29-greg-carmichael-tschoon-013
Dr. Gregory Carmichael has worked closely with scientists in East Asia since 1983 to address pressing air quality problems in that region. (Tim Schoon/University of Iowa)
Jenna Ladd | February 17, 2017

In Episode 5 of EnvIowa we speak with Dr. Gregory Carmichael, Karl Kammermeyer Professor of Chemical and Biochemical Engineering and Co-Director of the UI Center for Global and Regional Environmental Research, about his extensive research on global air pollution.

Dr. Carmichael shares his experiences collaborating with scientists in China, explains why air quality issues in East Asia should matter to Iowans and offers some perspective about what climate science research may look under the new federal administration.

More than 700 threatened animal species hit hard by climate change


31075313382_8226f666be_o
Tropical marsupials, such as the bushtail opossum, are most likely to be negatively impacted by climate change. 
Jenna Ladd | February 16, 2017

The changing climate has had a significant negative impact on 700 mammal and bird species according to a recent study published in Nature Climate Change.

While the majority of existing research focuses on the impact climate change will likely have on animal species in the future, new research suggests that the future is now. Researchers performed a systematic review of published literature and found that 47 percent of land mammals and 23 percent of bird species on the International Union for the Conservation of Nature (IUCN) list of threatened species have already been been negatively effected by climate change.

At present, the IUCN reports that only seven percent of mammals and four percent of bird species are threatened by the warming planet.

The study found that climate change is impacting animals on every continent. In general, animals that breed more slowly and live in high altitudes are suffering the greatest losses. Mammals with a more specialized diet are most profoundly effected due to regional vegetation change. For birds, species with small dispersal distances and longer generation lengths are most at risk.

The article read, “Our results suggest that populations of large numbers of threatened species are likely to be already affected by climate change, and that conservation managers, planners and policy makers must take this into account in efforts to safeguard the future of biodiversity.”

Those animals belonging to taxonomic orders which have been most extensively studied showed the most significant trend. Michela Pacifici of the Global Mammal Assessment program at Sapienza University of Rome is the report’s lead author. He said,

“We have seriously underestimated the effects of climate change on the most well-known groups, which means those other groups, reptiles, amphibians, fish, plants, the story is going to be much, much worse in terms of what we think the threat is from climate change already.”

Animals that live in tropical regions, like primates and marsupials, are at the highest risk because they have adapted to that biome’s climate, which has been relatively stable for thousands of years. The study said, “Many of these [animals] have evolved to live within restricted environmental tolerances and are likely to be most affected by rapid changes and extreme events.”

Just two orders of mammals, rodents and insect-eaters, were found to have benefited from climate change. Generally, these animals thrive in a variety of climates, breed quickly, and can burrow to protect themselves from changes in weather.

One of the study’s authors, James Watson, a researcher at the University of Queensland in Australia, said climate researchers should shift their focus to present-day.

“It’s a scientific problem in that we are not thinking about climate change as a present-day problem, we’re always forecasting into the future,” Watson added, “When you look at the evidence, there is a massive amount of impact right now.”

Iowa State researchers receive grants to improve glacier flow models and sea level predictions


hologate
                         Calving of the Aialik Glacier in Kenai Fjords National Park in Alaska. (Alaska National Park Service)
Jake Slobe | February 15, 2017

Iowa State University’s Neal Iverson and a team of researchers are working on research that will predict how much glaciers will contribute to the rise of sea levels.

The research will focus on the extent to which glacier-flow to oceans is likely speed up over the next century as the climate warms.

Iverson, an Iowa State University professor of geological and atmospheric sciences who has studied glaciers in Iceland and Norway, and the rest of the research team will look to lab experiments and field work to build more realistic computer models of glacier flow.

Iverson said about the project:

“Glaciologists are trying to predict how fast glaciers will flow to the oceans. To do that, we need new lab and field data to include complexity in models that is usually neglected. These are complicated systems. Modeling them is hard. But we need to include how water in ice affects its flow resistance, and we need sliding laws that are based on the real topography of glacier beds and that include rock friction. Adding these things really matters.”

Two new grants will help Iverson and his team fund their research, both of which grants are from the National Science Foundation.  The research will also receive funding from the United Kingdom’s Natural Environment Research Council to support the work of applied mathematicians at the University of Oxford in England.

Iverson is the lead investigator on both grant proposals. The other researchers are Lucas Zoet, an assistant professor at the University of Wisconsin-Madison and a former postdoctoral research associate at Iowa State; Ian Hewitt, an associate professor and university lecturer at Oxford’s Mathematical Institute; and Richard Katz, a professor of geodynamics at Oxford.

The first project will look at temperate ice, or ice at its melting point, and how this soft, watery ice resists deformation. That’s important because the resistance to deformation of temperate ice at the edges of ice streams – areas of rapid ice flow within the Antarctic ice sheet that can be hundreds of miles long and tens of miles wide – holds back the flowing ice.

The second project will support development of better “sliding laws” to help predict the sliding speeds of glaciers and ice sheets. Sliding laws are the mathematical relationships between the glacier sliding speed and the factors that control it, such as the stresses below the glacier, the water pressure there, the topography of the glacier bed and the concentration of debris in glacier ice.

Both projects will use the glacier sliding simulator Iverson has been using since 2009 to study glacier movement.

The new projects will add complexity to Iverson’s lab experiments. Debris, for example, will be added to the ice ring to study friction between it and the rock bed during sliding. In other experiments, temperate ice will be sheared between rotating plates to study how its resistance to flow depends on its water content.

University of Iowa drinking water exceeds maximum contaminant levels for disinfectant by-products


dsc_0263
Chlorine treatments react with organic matter in waterways to form Total Thihalomethanes, which have been linked to cancer and reproductive problems. (Jenna Ladd/CGRER)
Jenna Ladd | February 14, 2017

University of Iowa facilities management received notice on February 1 that its drinking water system contains levels of Total Trihalomethanes (TTHM) that exceed the federal drinking water standard.

In an email sent out to University faculty, staff and students on February 9, it was reported that the drinking water tested on average between 0.081 and 0.110 mg/L over the last year. The U.S. Environmental Protection Agency’s maximum contaminant level (MCL) for TTHM is 0.08 mg/L.

TTHM is a group of four chemicals: chloroform, bromodichloromethane, dibromochloromethane and bromoform. TTHM form when chlorine reacts with natural organic matter like leaves, algae and river weeds in drinking water. In its statement, the University said that more chlorination was necessary this year because higher than usual temperatures led to more organic waste in waterways.

The notice read, “You do not need to use an alternative (e.g., bottled) water supply. Disease prevention specialists with University of Iowa Hospitals and Clinics say special precautions are not necessary.”

Chloroform and dibromochloromethane are Class B carcinogens, meaning they have been shown to cause cancer in laboratory animals. TTHM has also been linked to heart, lung, kidney, liver, and central nervous system damage, according to a report by the University of West Virginia.

University officials cautioned, “However, some people who drink water-containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous system, and may have an increased risk of getting cancer.”

A study by the California Department of Health suggests that even short-term exposure to high TTHM levels in drinking water can have serious consequences for pregnant women. Scientists monitored 5,144 women during their first trimester of pregnancy. Participants who drank five or more glasses of cold home tap water containing 0.075 mg/L or more of TTHM had a miscarriage rate of 15.9 percent. Women that drank less than five glasses per day or who had home tap water with less than 0.075 mg/L TTHM had a miscarriage rate of 9.5 percent.

A reverse osmosis filtration system for the University of Iowa drinking water supply is currently in its design phase. Facilities management expects to have the new system up and running within the next 18 months. Officials say it will help address Iowa’s nitrate problem and filter out naturally occurring organic matter, resulting in fewer TTHM.

Nearly 50,000 gallons of oil spill from Iowa pipeline


4756076879_5740830004_o
Heavy snowfall in northern Iowa early this week complicated diesel oil clean-up efforts in Worth County, Iowa. (echoroo/flickr)
Jake Slobe | Febraury 13, 2017

This week’s On The Radio segment discusses a  oil spill onto a Worth County farm that took place last month.

Transcript: An underground pipeline recently leaked 47,000 gallons of diesel fuel onto a Worth County, Iowa farm.

This is the Iowa Environmental Focus.

The pipeline, which is owned by Magellan Midstream Partners, was first discovered to have ruptured last month. Situated twelve inches underground, the pipeline stretches across Iowa, Illionois Minnesota, North Dakota, South Dakota and Wisconsin.

Clean-up crews worked to vacuum the diesel fuel from the soil despite high winds and heavy snow. The spilled diesel fuel was transported to a facility in Minnesota while the remaining contaminated soil went to a landfill near Clear Lake. The spill did not reach the nearby Willow Creek and wildlife reserve.

Transnational oil pipelines remain a controversial issue in the United States. Following President Trump’s executive orders reviving the construction of the Keystone XL and Dakota Access pipelines, opponents expressed concerns about the environmental and human health impacts associated with refined oil pipelines. Since 2010, 807 spills have been reported, causing an estimated $342 million in property damages.

The spill in Worth County is the largest diesel oil spill since 2010, its cause is still under investigation.

For more information about the oil spill in Worth county, visit iowaenvironmentalfocus.org.

From the University of Iowa Center for Global and Regional Environmental Research, I’m Betsy Stone.